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Abstract 

We show that in completely unified Yang-MiUs-Einstein-Higgs-type gauge theories with 
spontaneous symmetry breaking there exists the possibility that hadrons can be visualized 
as "microuniverses'" where the large curvature within a region of about 0.7 x 10-1acm 
arises from a large negative value of the VEV of the Hamfltonian. The low-tying collective 
excitations of the system have Hooke group symmetry and can be described as multi- 
quasiparticle systems with osciUator-tike energy spectra. The lowest states span reducible 
representations of SU(3) and correspondence with the naive nortrelativistic quark model 
can be established. Confinement and absence of nonzero lxiality excitations can be 
explained in a natural way. 

1. Introduction 

In the well-explored class of  gauge theories with spontaneously broken sym- 
metries the asymmetry of  the vacuum is closely related to the nonvanishing 
vacuum expectat ion value of  a Higgs field. In a canonical formulation this 
(¢)  appears as a constant term in the Lagrangian. I f  we consider a fully unified 
gauge theory of  the Yang-MiUs-Higgs-Einstein type I and vary the world 
Lagrangian with respect to the metric guy, then the constant (q~) contributes a 
term of  the form f(V)guv to the energy-momentum tensor Tuv in the gravita- 
tional field equations, where V denotes an effective potential .  Clearly, even 
for empty  space, f ( V )  ~ O. The total  energy momentum tensor can then be 
split into two parts, 

Tuv = T~v + T;'Mv (1.1) 

where ~ v  is the contr ibut ion from matter  and radiation, and 

T[a V =- f (  V) guv (1.2) 

t See, for example, Cremmer and Sherk (1977), Cho and Fmund (1975), Bais and 
Russell (1975). 
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is the vacuum contribution. The Einstein equations read 

where we have defined A by setting 

(1.3) 

K TVv = Ag.v (I .4) 

Thus, the effect of a nonvanishing Higgs field vacuum expectation value 
manifests itself in the necessary appearence of the cosmological term with 

A = r f ( V )  (1.5) 

The curvature-modifying effect of  s~ontaneously broken symmetry has 
been noted recently by several authors ~ and has been persued in various 
directions, mainly in studying possible cosmological consequences. In this 
paper we propose to explore the possibility that the solutions of the gravita- 
tional field equations (1.3) with A given by (1.5) describe strongly curved 
"microuniverses" with de Sitter-type symmetry which we identify with 
hadrons. Low-energy excitations of such systems can then be interpreted to 
correspond to quasiparticles which transform as representations of the Hooke 
group, the latter being the nonrelativistic (low-speed) limit, in the sense of a 
speed-space contraction, of the de Sitter group (Bacry and IAvy-Leblond, 
1968). Appropriate multiquasiparticle states wilt be identified with the con- 
ventional harmonic oscillator quark model (Faiman and Hendry, 1968), 
states, where the existence of SU(3) degeneracy within the energy eigenstates 
of the Hooke system provides the correspondence between quarks and Hooke 
quasiparticles. 

2. Solution o f  the FieM Equations and Microscopic Effects o f  
Higgs-Mechanism-Induced Curvature 

We seek the simplest class of solutions of the Einstein equations (1.3), i.e., 
we assume that the line element is spherically symmetric and, with a suitable 
choice of time coordinate, static. Thus (we shall take c = 1 throughout this 
paper) we have 

ds 2 = eV(r)dt2 - eX(r)dr2 - r2d~2 2 (2.1) 

where 

d~22 =- dO 2 + sin20dtp 2 (2.2) 

To start with, we take TM~/~v = 0; then (1.3) gives 3 

e v = 1 - ½ A r  2, e x =(1 - ~ A r 2 )  -1 (2.3) 

2 Lind (1974), Veltman (1975), Domokos (1976). 
z For the subsequent, well-known calculations see, for example, Rindler (1969). 
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To exhibit the symmetry group of this space, we embed it in a five-dimensional 
pseudo-Euclidean space. As is well known, the embedding formulas depend 
on the sign of A. For A > 0 we set 

Xo = ( 3 )  1/2 ( 1 -  A~----~2) l/2[[sinhl-~}/A'l/2 ]t] 

X1 [cosht3- ) q 

x2 = r sin 0 cos ¢ 

x a = r sin O sin 

X 4 = rCOS0 

which yields the equation of a pseudohyperboloid: 

Xo 2 -- X12 -- X22 -- X32 -- X42 = __1 A (2.4) 

On the other hand, if A < 0, we must set 

= l±l  ( 
Xo \[A[] 1 + 

= [ 3._~_11/2 ( 
xx UAI} 1 + 

x= = r sinh O cos~ 

x a = r sinh O sin~b 

[ ~ r 2 ) l / 2 [ s i n ( ~ - ) l / 2 t ]  

IAI 2]1'2 [ /[AI~ 1%] 
] 

x4 = r cosh 0 

and obtain the equation of a pseudosphere: 

Xo 2 -  Xl z - x 2 2 - x 3  e +x42 =~lml (2.5) 

Thus, we see that for either sign of A the group of isometries of the solution 
is of the de Sitter type; for A > 0 the group is isomorphic to S0(4,  1) and for 
A < 0 it is isomorphic to S0(3, 2). 

By a suitable coordinate transformation the line element (2.1) [with (2.2) 4 
and (2.3) understood] carl be cast into the standard Robertson-Walker form, a, 
and we have, for A > 0, 

[ /A\  1/2 ] 
3 [cosh2t3 ) al[d2x+(s in2x)d~22]  (2.6) ds 2 = da 2 _ -~ 

4 For definiteness, we assumed positive 3-curvature. For negative (zero) curvature the 
cosh in front of the appropriately taken bracketed term must be replaced by sinh (exp), 
respectively. 
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whereas for A < 0 we obtain 

d s  2 = d ~  2 - ~ - ~  cos 2 [d2x +(sinh2x)da 21 (2.7) 

It is interesting to note that, for A < 0, when the scale factor of the spacelike 
section of the 3-world at a given time coordinate a is oscillating, the "maximal 
radius" (amplitude) A - (3/IAt)  1/2 happens to be the same as the radius of 
the 5-hypersphere in the (formal) embedding space, cf. equation (2.5). (A 
similar remark applies, mutatis mutandis, for the case of A > 0.) 

In order to study the departure of the empty-space geometry from the flat- 
space geometry in the case of a spontaneously broken gauge symmetry, we 
now attempt to express the effective cosmological constant (or equivaleatly, 
the "radius" A of the 3-space sections) in terms of the parameters that are 
characteristic of a spontaneously broken gauge theory. For the sake of  
orientation, we concentrate on that class of models that contains homogeneous 
Higgs field terms in the Lagrangian. The Higgs part of the Lagrangian can be 
written as 

L~ = a~¢t ~u¢ + p2¢t¢  _ X(¢t¢)2 (2.8) 

Introducing new fields ¢1 and ¢2 via the decomposition ¢ = ¢1 + i¢2 with 
¢1, ¢2 Hermitian, and allowing one field to acquire a nonvanishing vacuum 
expectation value o, we get the formal change 

L¢ --> L~; •; = Z¢; ~; + ½p2crz - ¼Xo" (2.9) 

where L~, ~,, contains all the "operator terms" in the new shifted fields 
v v -r i ,~,a 

¢1, ¢2- As is well known, stability considerations lead to 

02 = Id2 /~ (2.10) 

Because of the presence of nonarbitrary constant terms in the Lagrangian, the 
vacuum expectation value of the energy density cannot vanish, and from 
(2.9), using (2.10), we find 

(/-/) = --bt 2 0 2 / 4  ( 2 . 1 1 )  

By reason of covariance, then, v - T~v- -(t22tI2/4)g#v so  that equation (1.4) 
yields 

A = --g/22 0 2 / 4  (2.12) 

Since p2 > 0, o 2 > 0 we see that A is negative, so that for our system the 
oscillating S0(3, 2) de Sitter solution, given above, applies. The effective 
"radius" or amplitude s is given by 

A = (3/[A[) 1/2 = ( 1 2 / g p 2 0 2 )  1/2 (2.13) 

s t t  is well know n  (cf. Rindler, 1969) tha t  the oscillating de Sitter solution (somet imes  
also called " e m p t y  Lema~tre solut ion")  is an  open "universe ."  Thus ,  while we were led 
to view hadrons as microuniverses, the "radius" A does not have such a simple inter- 
pretation as would be the case for some closed microuniverse. At any rate, A is a 
characteristic length of the hadton and one should imagine the internal curved space 
smoothly joined, at A, to the external flat space. 
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Equation (2.7) also tells us that the circular frequency of the oscillation is 

co = ( [A I/3) 1/2 = (tql 2 a 2/12) 1/2 (2.14) 

In order to get numerical estimates for A, A, and co, we consider first a 
Salam-Weinberg-type unified theory of weak and electromagnetic interactions 
only. In that case 

o2 = (21/2GF)-1, g2 = m¢2/2 (2.15) 

where GF is the Fermi weak coupling constant and rn¢ the Higgs bosun mass. 
Whereas, in the tree approximation, me is arbitrary, Weinberg (1976!6recently 
showed that in the one-loop approximation one has the lower bound 
me > 4.91 GeV. Using this bound and the accepted values for GF and •, we 
obtain from (2.12), (2.13), (2.14), and (2.15) the estimates 

IAI > 3 x 10 4 cm -2 

A < 6 x  10-2 cm 

~o > 1 x 10 is sec -1 

Since there is no reason to believe that the actual value of rn¢ is many orders 
of magnitude larger than its lower bound, this result does not appear promising, 
since it predicts a "radius" about 1012 times larger than the region where one 
might reasonably expect significant deviation from flatness. In passing we note 
that including the effect of the presence of some kind of subnuclear matter on 
the energy-momentum tensor (i.e., adding to TVv some term TuMv) has no 
significant consequence. Indeed, taking this matter to be incoherent dust and 
maintaining maximal symmetry, the only effect on the solution is to modify 
everywhere A to become A + ~p, where p is the matter density. Adopting the 
value -'-1014 gcm -3, we find, with the value of A calculated above, 

t~p/A < 10 -17 (2.16) 

so that the correction is utterly negligible. 
However, a moment's reflection tells us that we are not really in trouble. 

Indeed, our fundamental premise has been that our underlying world Lagrangian 
suffices to yield all field equations and interactions. It is therefore inconsistent 
to consider a theory where, besides gravitation, only electronmagnetic and weak 
interactions are unified: we must visualize possible theories that account for 
strong interactions as well It is generally believed that the observed hierarchy 
of interaction-strength is an effect of the symmetry breaking and that, in 
particular, the unique superstrong coupling constant determines the scale of 
the associated Higgs boson masses m "-- p. If these quantitites are large enough, 
equation (2.13) tells us that the characteristic "radius" A may become 
sufficiently small to account for the curved region corresponding to a hadron. 
For example, in the SU(5)-type tmified theory of Georgi and Glashow the 
superheavy bosons must have masses (Georgi et al., 1974) of about 101s-1017 
GeV. It is also interesting to observe that, in the gauge supersymmetry theory 

6 This holds if one uses for the Weinberg angle the value 0 W ~ 35°. Otherwise, mq5 > 3.75 GeV. 
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of  Arnowit t  (1977) (which is the "u l t imate"  unified gauge theory,  since all 
fields are gauge fields), superheavy masses of  order as high as 1018 GeV appear 
to  be necessary to account for some experimental  facts. 

In summary,  the very real possibili ty of  such superheavy masses and/or  
large symmetry-breaking effects (reflected in large values of  a) makes our 
viewpoint viable. Turning the argument around, we observe that  we expect  

A ~< 0.7 x 10 -13 cm (2.17a) 

(which is the typical  length corresponding to  a hadron formfactorT). Then the 
re la t ionA = (3/I  AI )  1 ~ gives s 

IAI >~ 6 x 1026 cm -2 (2.17b) 

and from co = ( I A I / 3 )  1/2 we get 

to > 4 x 1023 see -1 (2 . t7c)  

We note that ,  since I AI is so large, effects of  subnuclear mat ter  on the 
curvature are absolutely negligible. 

3. Symmetries and Energy Eigenstates o f  Hadron Microuniverses 

In order  to  study the characteristic propert ies  o f  hadrons conceived as 
microuniverses, we must first s tudy the symmetry  propert ies and energy 
excitat ions o f  such systems. 

Since, as pointed out  above, the presence of  normal subnuclear mat ter  does 
not  alter the de Sit ter-type metr ic  solution of  the Einstein equations,  the 
internal excitat ions of  our systems can be considered to be represented by  the 
mot ion  of  quasiparticles 9 in the de Sitter world,  following essentially free 
particle trajectories. 

We will be interested in the lowest hadronic energy excitations. These low- 
energy excitat ions o f  the quasiparticles correspond to low-velocity motions  of  
the quasiparticles.  To see this we observe that ,  for low-energy excitations the 
quasiparticles essentially just  follow the oscillatory mot ion  of  the de Sitter 
world, and the order of  linear velocity corresponding to the circular frequency 
w is v < A w .  Using then the numerical  values (2.17a) and (2.17c) we see that  
v < 0.3 x 101°era sec -1, i.e., v/c < 10 -1, as we claimed 

7 Another possible hadronic length scale is obtained from the universal slope a'  of Regge 
trajectories as A ~ (a')l~2fic ~ 0.2 x 10 -13 cm. 

s We note that from (2.12) we get, with the value of A as given by (2.17b) and with a 
superheavy mass # ~ 1016 GeV, the value a 2 >~ 1049 erg -1 cm -3 for the "measure of 
symmetry breaking." [For comparison: also in the Salam-Weinberg theory, according 
to (2.15) we have a 2 ~ 0.5 x 1049 erg -1 cm-3.] Conversely, we may say that, if in the 
weak.electromagnetic sector the symmetry breaking is of the "usual" order of magni- 
tude and if the characteristic "radius" A ~ 10 -1 s cm, then the theory must contain a 

• superheavy mass/~ N 1016 GeV. 
9 We assume that, at least for the lowest excitations~ interactions between these repre- 

sentative quasiparticles can be neglected, so that they are "free." 
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Now, it was first shown in Bacry and IAvy-Leblond (1968) that the speed- 
space contraction (i.e., the low velocity, small spatial distance approximation) 
of the de Sitter group is the Hooke group.l° Thus, in our microuniverse model 
of hadrons, the symmetries of  lowly excited states will be determined by the 
Hooke group. 

It is well known (Bacry and IAvy-Leblond, 1968; Roman and Haavisto, 
1976) that the energy of a freely moving particle with Hooke symmetry is 
given by the Hamfltonian operator 11, 12 

g = p2/2M + (Mw 2 ~2/2) (3.1) 

which has the eigenvalues 

E = hco(N + 3/2), N = 0, 1 . . . .  (3.2) 

Thus, in our model, these quasiparticle energy levels will correspond to the 
low-lying hadron states, with one quasiparticle present. 

We can now estimate the lowest-lying hadron state energies. For N of order 
1 ,E ""/~w and with (2.17c) we g e t E ~  10 2 MeV, which is indeed of the order 
of the masses of the lightest mesons, as one would expect. A more detailed 
analysis will be given in Section 4. It is interesting that we can turn the argument 
around and thereby get a "consistency" check of our mode1. If we put, for the 
lowest excitations (N ~ t), E ~ hco ~ 200 MeV, we have co ~ 1022-1023 sec -1, 
just as we found from the microuniverse model built on the Higgs mechanism. 

The hadronic microuniverses ought to be looked upon as "bubbles" imbedded 
in the locally fiat external space-time (cf. footnote 5 above). Accordingly~ the 
hadronic wave functions will be bilocal; one coordinate, x u, describing the 
position of the bubble in Minkowski space-time, and the other coordinate, ~, 
describing the location of the quasiparticles in the internal curved space-time. 
Since we are interested only in the tow-energy region where the description of 
the (low-speed) quasiparticles is approximated by the nonrelativistic Hooke 
group, each quasiparticle needs a three-vector ~ to be localized; hence, if we 
have a state with n quasiparticles, the generic symbol ~ refers to a set of 3n 
numbers. 

If we have a hadronic excitation that corresponds to n (noninteracting) 
Hooke quasiparticles, the Hamiltonian of this system is 

n 
H =  ~ [(P(i))2/2Mi +(Mi~o2/2)(~(i)) 2] + U (3.3) 

i=1 

10 For a derivation of  the  Hooke group based on local gauge groups in curved space see 
R o m a n  and Haavisto (1976). Fur ther  references to the  Hooke group can also be found  
in this paper. 

11 Since our m o d e l w o r l d  has S0(3, 2) rather than  S0(4, 1) symmet ry ,  the  relevant 
Hooke group is~F*, and we use, in the  following, the  corresponding formulas.  Cf. 
Bac~y and L~vy-Leblond (1968) and Roman  and Haavisto (1976). 

12 The f requency to occurs in the Hooke algebra via the  commuta to r  [H, P/c] = / M w  2 ~/c 
and  is the  same as the  oscillation frequency of  the  spatial sections of  the  de Sitter 
world, cf. equat ion (2.7); i.e., in our case, to = ( IAI /3)  1/~. The M i s  one o f  the Casimir 
invariants; the  posi t ion operator  ~ is related to the  generator  o f  boos ts  Q by  ~ = Q/M. 
In our  mode l  M is the  quasiparticte mass. 
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where Mi is the mass of the ith Hooke particle and U the internal energy of 
the system. 13 According to our model, we naturally identify the eigenvatue 
mo o f  (3.3J with the mass o f  the hadronic state corresponding to the quasi- 
particle system. If the corresponding eigenstate of H is denoted by ~(~), this 
wave function is unaffected by external (restricted PoincarS) transformations. 
I t  then follows that (in our approximation) the group structure of the hadron 
bubbles is simply the direct product of the Poincar~ and the Hooke groups, so 
the bilocal wave function factorizes 

@(x, ~) = ~(x)~(~) (3.4) 

In particular, under restricted Poincar~ transformations we have the trans- 
formation law 

[U(A)qq (x, ~) = 4,(A-lx)~(~) 
(3.5) 

[U(a)q,] (x, ~) = ~(x - a)~(~) 

While the internal ~(~) part of the bflocal wave function is unaffected by 
restricted Poincar~ transformations, this may not be the case for discrete 
transformations. For indeed we know that various single-hadron states can be 
assigned intrinsic parity and charge-parity quantum numbers, In order to 
determine the effect of P, C, and T symmetry transformations on the Hooke 
part ~ )  of the hadronic wave function, we examine equivalently the effect 
of these operations on the Hooke group generators. 

It has been shown by Rosen (1965) that using the five-dimensional imbed- 
ding of the de Sitter group, one can systematically def'me coordinate reflections 
T, P, C which, in the flat-space limit, are symmetries analogous to these 
operations acting in Minkowski space. The action of T, P, C on the embedding 
space is given by 

T: (xo, x, x4)-~ ( -xo ,  x, x , )  
P: (Xo, x, x4) -~ ( Xo, - x ,  x4) (3.6) 

C: (xo, x, x4) -~ ( xo, x, -x4 )  

We look for the corresponding transformations when we contract to the Hooke 
group. Using the standard realizations 14 of the generators Pk, Q~ and remember- 
hag the antiunitarity of T, we directly fred that 

P: Qtc ~ -Qk 
(3.7a) 

P: ek ~ - P I ,  

13 We remind  the reader that an irreducible uni ta ry  representat ion o f  the  Hooke group 
is labeled by  mass  M, spin s, and  an interal energy U. For a single particle, U can be 
taken to be zero; bu t  for a sys tem of  particles (direct product  o f  irreducible represent-  
ations) this  cannot  be done arbitrarily for each te rm in the  reduction.  

14 As shown in R o m a n  and  Haavisto (1976) and  Ba t ty  and L~vy-Leblond (1968) 

Q/c ~ M~k cos cot - (i/w) (sin wr)at: 
Pk ~ - / ( c o s  wr)O/c - M~/¢ co sin tot  

Here ~/¢ cozresponds to the  imbedding coordinate  x/c, and the  historical t ime  r to the  
X 0 - 
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T: Qk -+ +Qk 
(3.7b) 

T: Pk -~-Pk 

To see the action of C on the Hooke generators, we must follow the de Sitter 
generators through the contraction process. Writing the de Sitter algebra as 
[Mab,Mcd ] = i(gacMba + gbaMac -- gaaNbe -- gbcMaa) and looking at (3.6) 
we see that 

C: Mat, ~ +Mab if a, b ~ 4 

C: Mab "+ --Mab i fa  = 4 or b = 4 (3.8) 

As is well known (Bacry and L6vy-Leblond) the contraction is exhibited by 
de fining 15 

Qk = lira e/like (3.9a) 
e--+ 0 

Pk = lim eMk4 (3.9b) 

In view of (3.8) we then get 16 

H ~- J~o 4 (3.9C) 

J ----Mkl (3.9d) 

M -  lira e2H (3.9e) 
e.--~ 0 

C: Qk -+ +Qk 

C: ek -~-Pk 

C: Jk -~+Jk 

C: H-+ - H  

Finally, (3.9e) tells us that the last line of (3.10) implies 

C: M ~  - M  (3.11) 

These results are, naturally, also consistent with the commutators [Pk, Ql] = 
--/Mgkl etc. of the Lie algebra. We note that, since the position operator 
Z =- Q]M, equations (3.10) and (3.11) tell us that 

C: ~k -~ - ~ k  (3.12) 

15 We consider the generators Mab as functions of e ~ A-~, where A is the amplitude of 
the de Sitter world. 

16 At this point we mention that, because of (3.7a), (3.7b), and (3.1), under P and T 
neither H nor [in view of (3.9e)] M changes. From consistency" of the Lie algebra it 
follows that dk does not change under P but changes sign under T. 
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Next, we observe that H -+ - H  implies E - + - E .  In view of (3,2) we therefore 
have, for the system with [I, th6 energy spectrum of a single Hooke particle 

E = ( N  + 3/2)h~, N>~O (3.13a) 

but for the C-transformed system with - H w e  must write 

E'  = ( - N -  3/2)h~, N~> 0 (3.t3b) 

The spectrum of the original system starts at the ground state with Eo = ~heo 
and goes upward, whereas the C-transformed system has its ground state at 

:3 Eo = -~fi¢o and then goes downward. We can express these results by saying 
that 

C: N ~ - N  (3.14) 

In other words, C-transformed Hooke particles are characterized by negative 
energy and negative energy level occupation operator eigenvalues. In terms of 
raising-towering operators, therefore, the C-transformed Hooke level-raising 
operator (which makes N-+ N + t) annihilates the ground state, whereas the 
lowering operator increases the magnitude of energy by one unit hro. 

Finally we note that because of  the realization H - i O  r and because of 
(3.10), the historical time parameter ~- changes sign under C transformations. 17 

We conclude this section with an important observation. In our model we 
identify the energy of excited states with the mass of the hadron. Since C- 
transformed Hooke particles (and thus, collective excitations that correspond 
to states made up from such quasiparticles) have, formally, in the non-second- 
quantized description negative energies, whereas we must have m > 0, we have 
a meaningful model only if we interpret (when allowance is made for second 
quantization) these negative-energy Hooke particles in the framework of a 
"hole theory." That is, a negative-energy Hooke particle will have to be con- 
sidered as an antiquasiparticle with positive energy, i.e., 

Eanti_q.p. = IE'I = (N + 3/2)h~ (3.15) 

Since a hole theory makes sense only if the "particles" obey Fermi statistics, 
we must accept the fact that the Hooke particles are fermions. In a non- 
relativistic theory the spin-statistics theorem cannot be proven and it plays the 
role of a postulate. Thus we are led to conclude that the Hooke representations 
(which describe the quasiparticles that are brought about by the unknown 
dynamics of the system) belong to half-integral spin. For simplicity we then 
take all emerging quasiparticles (i.e., Hooke representations) to have s = 1/2. 

4. SU(3) Structure and Connection with the Quark Model 

At this point, we can make contact with the simple quark model. We saw 
that the energy operator corresponding to an n-quasiparticle excitation of the 
Hooke model is given by equation (3.3). On the other hand, the starting point 

17 This is also consis tent  wi th  the  Qk, Pk realizations given in foo tno te  14. Observe that ,  
because of (3.12), we have ~k ~ --~k- 
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for the standard naive nonrelativistic quark model (Falman and Hendry, 1968) 
is the Hamiltonian 

n n 

H = ~ (P(i))z/2M+(Mco2/2) ~ (r(i)-rq)) 2 (4.1) 
i=I i<] 

where M is the average of the M i .  This expression is then transformed to 
center-of-mass coordinates, and the CM motion is ignored as unphysical 
("spurious" states). The resulting Hamiltonian corresponds to that of the 
shell model: 

n 

H = • [(P(O)2/2mi + moo 2 ¢(/))2] +E c (4.2) 
i=1 

where now the coordinates refer to quark-CM distances, m i are the reduced 
masses (with average m), and E c is the CM kinetic energy. Comparing (4.2) 
with (3.3) we thus see that if our quasiparticles can be given quark [i.e., SU(3)] 
quantum numbers,18 then the Hooke description o f  our model is equivalent 
to a nonrelativistic quark model with harmonic force interactions. One 
immediate advantage of this viewpoint is that no quark confinement problem 
arises: The "quarks" are simply quasiparticles that are used to characterize the 
collective excitations of our model. Below we pursue these ideas in some 
detail. 

4.1. Quasiparticle Spectrum and SU( 3). The one-quasiparticle excitation 
energy spectrum of our model is given by equation (3.1). To exhibit the well- 
known SU(3) degeneracy of the energy levels, we introduce the standard 
level-raising and -lowering operators, 

a k = (2 -1/2) [ (M~/ t l ) l /2~  k -- i (h /M~) l /2pk]  (4.3a) 

a~ = (2 -1/2) [(M~/I01/2~,~ + i(~/Meo)l/2Pk] (4.3b) 

and def'me the operators Akl  = a~at which are known to obey the U(3) algebra. 
It is convenient to introduce the linear combinations 

= 1 t _a~a2 ) I+=atla2, I -=ala t2 ,  13 ~(alal 

- 1  t at3a3) (4.4) U+ = a~a3, U_ = a2at3, U3 - -~(a2a2 - 
=1 t V + = a l t a 3 ,  V_ =alat3, V 3 ~ ( a l a l  - a t 3 a 3 )  

which are the familiar generators of SU(3), and also 

N =  aria1 + at2a2 + at3a3 (4.5) 

which generates U(1). The usual diagonal operators used for labeling states 
can then be expressed as 

Q~_~(/3+2V3)=2 t 1 t 1 t ~ala I - -  -~a2a 2 - -  ~a3a 3 
Y=](2U3 +I3) =-~(alall J" +a~a2 -2at3a3) (4.6) 

1 t 13 = ~ ( a l a l  -- at2a2) 
is  We already know that the spin quantum number of our quasiparticles is 1/2. 
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If we denote the eigenvalues ofa~ak by n/c (which is an integer) then we can 
write 

Q = -~nl - ½n2 - ~n3 (4.7a) 

Y = l (n  1 + n 2 - 2n3) (4.7b) 

I3 = 1(nl - n2) (4.7c) 

For any fixed value of E, that is, for any given energy level determined by 
the eigenvalue of  N, the degenerate eigenstates span an irreducible representa- 
tion of SU(3), whose dimension equals the degree of degeneracy. In particular, 
f o r N =  1, the state vectors have the form 11) = In1> tn2)In3>, where nk is the 
occupation number for oscillation in the ~k direction and nl  + n2 + n3 - 1. We 
have then the basis 

(!I Ci> (:I - I t >  I0> I0>, = I0) I1)10), 
I 

10) 10)11> (4.8) 

which spans the representation {3}. If we consider, instead of a Hooke particle, 
the corresponding C-conjugate particle, then, as was discussed in Section 3, N 
changes sign and thus the nk are negative. The basis I-1)10)10) etc. carries the 
representation ( 3* ), which can be seen from the fact that, as (4.7) shows, the 
diagonal operators have eigenvalues of opposite sign, We should, however, 
remember that, as discussed at the end of Section 3, the physical antiquasi- 
particle energy associated with the { 3* } representation (as well as of the 
entire antiquasiparticle spectrum) is positive. 

Usin~ the basis (4.8) and substituting the appropriate nk into (4.7) we see 
that the first excitation level of  the Hooke quasiparticle carries precisely the 
well-known SU(3) quark quantum numbers. Similarly, the first level of the 
antiquasiparticle is associated with the antiquark quantum numbers. This, 
then, establishes the desired link. 

Even though, as noted above, the excitation spectrum of a single quasi- 
particle/antiquasiparticle reproduces all irreducible representations of SU(3), 
in the following we will not be interested in these higher levels of  single excita- 
tion; rather, we wish to study systems in which there are several quasiparticles 
(and/or antiquasiparticles), with each of  them occupying the levet N = 1. (The 
physical reason for this restriction will be discussed shortly.) Furthermore, in 
our first approximation for the low-lying hadron states we shall assume (as 
mentioned earlier) that the quasiparticles do not interact, i.e., they are free 
Hooke particles. In consequence of these assumptions, the multiquasiparticle 
states we consider will be direct products of {3} and/or {3*} representations 
of SU(3), and will span, in general, reducible representations. 

In order to discuss these multiexcitation states in terms of Hooke generators, 
we define level-raising and -lowering operators 

(i)a~, (Oa k ( i  = 1,2 . . . . .  n; k = 1,2, 3) 
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for the n distinct quasiparticles. 19 To consider a specific example, let us take a 
three-quasiparticle system. From equation (3.3) it then follows 2° that, in 
general, 

E~ = (N (1) + N (2) + N (3) + ~)hco + Us (a = 1 . . . . .  r) (4.9) 

i:-Ier e 
3 

N (0 = ~ (i)a~ (Oak (i = t ,  2, 3) (4.10) 
/¢=1 

and these operators have the eigenvalues 
3 

n(O = i) (i = 1, 2, 3) (4.11)  
k = l  

where each n (0 is an integer. The Us Hooke internal energies are in general 
different for the r irreducible components a = 1, 2 , . . . ,  r that occur in the 
product representation. In keeping with our low-energy (low-speed) approxi- 
mation, we must take all three excitation levels to be the lowest, 21 i.e., we 
take 

n O) = n (2) = n O) = 1 (4:12) 

Thus, each of the three quasiparticles is occupying its first level of excitation, 
so that, according to the preceding analysis, it belongs to the {3} representation 
of SU(3). Consequently, our three-quasiparticle system carries the product 
representation 

{3} x {3} x {3} = (1} + {S} + {S} + {10} (4.13) 

With (4.12) and (4.11)we then obtain from the general formula (4.9) the 
energy spectrum for this supermultiplet: 

E~ = ~hco  + Us (o~ = 1 . . . . .  4) (4.14) 

for the masses of the 27 possible hadron states contained in (4.13). The mass 
splitting of the four irreducible components is accounted for by the Hooke 
internal energies Us, which cannot be calculated since the dynamics that gives 
rise to the Hooke quasiparticles is not encompassed by our model. Within each 
irreducible component we have mass degeneracy. 

In general, for an n-quasiparticle excitation, the Casimir invariants depend 
not only on 

n 

N = ~ n (i) (4.15) 
i=1 

19 For antiquasiparticles, the  remark following equat ion (3.14) mus t  be remembered .  
2o Since we disregard interactions,  and since the  (unknown)  dynamical  mechan i sm that  

brings about  the  quasiparticles cannot  distinguish them,  the  masses ~ I  i (i = 1, 2, 3) will 
be the  same. 

21 If we permi t ted  any n (0  > 1, the expectat ion value of  P(i) may become too large for 
the  Hooke group to be applicable. Note that ,  as discussed in Section 2, even for a 
single quasiparticle and N = t ,  we have v / c  ~ 0.1, i.e., the  validity o f  nonrelativistic 
mot ion  is marginal. 
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but also on the total number of quasiparticles "oscillating" in each direction, 
i.e., on the quantities 

n 

nk =-- ~ n(g i) (k = 1, 2, 3) (4.16) 
i=l 

I f N  is fixed, the different irreducible representations can be characterized by 
identifying the maximum number of quasiparticles "oscillating" in any one of 
the three directions. For example, in the specific case studied above, N = 3 and 
we find (by constructing the possible product eigenfunctions belonging to the 
degenerate oscillator states) that 

f i  for {1) max nk = for (8) (4.17) 

for (10) 

Another interesting example is the study of an excited state that contains 
one quasiparticle and one antiquasiparticle. Then, in general, we have 

E~ = (N O) +2V (2) + 3)h~ + Us (a = 1, 2 . . . . .  r) (4.18) 

Once again, in the spirit of  our low-energy approximation, we must restrict 
ourselves to the values 

n O) = t~ (2) = 1 

so that 
E~ = 5hco + U s (a = 1,2) (4.19) 

and the nine states span the product representation 

(3) x (3")  = (1) + (8) 

The splitting between the singlet and octet mass is determined by the Us. We 
now have N = 2 fixed and, writing n k - n (1) (z) + fig ~ we find that 

1 for (1) 
max nk = [2 for {8) 

in conformity with (4.17). 

4.2. Quasiparticles and Quarks. In order to discuss in more detail the 
decomposition of the product representations that are associated with multiple 
quasiparticle systems, each in its lowest state (n (i) = 1) of excitation, we must 
perform the reduction of the product with respect to a specific subgroup chain. 
The most illuminating approach to do this is to fully utilize the connection 
between our quasiparticle description and the standard SU(3) quark model, and 
to use the SU(3) ~ SU(2) x U(1) chain. We already know that the Hooke 
quasiparticles have spin ½ and their n = 1 level states have quark SU(3) quantum 
numbers. In particular, from (4.8) and (4.7) we see that the u, d, s quarks 
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[o1: 

~zl] t 

~zo] [z~o] 

Figure 1. Baryon octet. 

correspond to an N = 1 quasiparticle that "oscillates" in the ~1, ~2, ~3 direction, 
respectively. We shall write generically for a system in which the to ta l  number 
of occupied oscillation modes in the ~ 1, ~2, ~3 directions is n a, n2, n 3, 
respectively, the symbol 

Thus, in particular, 

u = [1001 , 

A = [ n l n 2 n 3 ]  (4.20) 

d = [101], s = [001] 

Similarly, for the antiquarks 22 we have 

5 = [ -100] ,  d =  [ 0 -  I0] ,  ~ = [00 - 1] 

it is now evident that, if we consider systems with several quasiparticle and/or 
antiquasiparticle excitations present (each in its n (i) = n~ i) + n~ z3 + n~ i) -+1- _ 
level), the sum of the entries in the generic "particle symbol" (4.20) wE give 
the number of quarks minus the number of antiquarks. Thus, in any (degener- 
ate)-multi-quasiparticle/antiquasiparticle system (with each n (i) = + 1) we have, 
for all members of  all irreducible SU(3) multiplets that are contained in the 
reducible representation, the same value for n 1 + n 2 + n a = No. of quarks - 
No. of antiquarks. Moreover, the entries nl, n2, n3 in the symbol (4.20) will 
tell us how many u, d, s quarks and/or fi, d, § antiquarks are present. 

For example, considering again the case when we have three quasiparticles 
(each in its first excited state), n 1 + n2 + na = 3. Because of the additivity of 
the level occupation numbers, the isospin component and hypercharge quantum 
numbers of these states can be correlated to the symbol (4.20) by using equa- 
tions (4.7). As an illustration, Figure 1 shows the baryon octet, conveniently 
displayed in a triangular coordinate system, with axes n 1, n2, na and centered 
about the point [111]. The point [102], for example, designates the system 
uss, i.e., the 2 ° particle. 

22 Note that, because of the hole-theory picture, the antiquasiparticle subievel occupation 
numbers ri k are the negatives of the C-conjugate Hooke particle sublevel occupation 
numbers n k .  
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low] [m-O 

Figure 2. Meson octet .  

The meson octet (which is part of the reducible representation composed 
of one quasiparticle and one antiquasiparticle-each of them in the first excited 
level) is illustrated in Figure 2. In this case nl + n2 = nx - n2 = 0. The quark 
composition is again evident from the label [n ln2 n 3 ] o f the points. 

In general, given nl, n2, n3, there can be several different particles [nln2ns] 
which belong to different SU(3) multiplets and/or SU(2) submultiplets. As in 
the quark model, these questions can be best described by considering the 
symmetries of the complete wave function. Since the Hooke quasiparticles 
have spin½, the energy eigenstates will have an over-all SU(6) D SU(3) x SU(2) 
SU(2)spin structure, and we must distinguish identically lab ele d [n in 2n 3] states 
in relation to their symmetry under SU(6). Consider, for example, the three- 
quasiparticle (baryon) states. With respect to spin we may have fully symmetric 
states (they have s = ~) and mixed symmetry states (they have s = ½). Further, 
the physical SU(3) states are fully symmetric (they belong to {10}) or have 
mixed symmetry (these belong to {8}). To be specific, consider the (positive 
parity) baryons that are characterized by our symbol A = [111], i.e., the 
excitations with three quasiparticles where all three are on the first energy 
level (n O) = n (~) = n (3) = 1) and where one quasiparticle "oscillates" in each 
direction. There will be three such states. One will be symmetric with respect 
to spin (s = ~) and symmetric with respect to SU(3) (i.e., belongs to {10}). 
This is the I3 = 0 member of the Y* (1385) isotriplet. The other two [ t i1 ]  
states have mixed spin symmetry (i.e., s = ½) and mixed SU(3) symmetry 
(belong to {8}). In the SU(3) D SU(2) x U(1) decomposition they can be 
distinguished as the No and the A, respectively. 

4. 3. Relative Phases between Quasiparticles. We can gain further insight 
into the nature of multi-quasiparticle/antiquasiparticle systems if we adopt a 
suitable maximal set of commuting observables for labeling the states. Gener- 
alizing the work of Carruthers and Nieto (1968) we shall construct observables 
that measure averaged relative phases between the oscillators that correspond 
to our quasiparticles. 
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Let us introduce, for a single given Hooke oscillator, the "renormalized" 
level-towering and -raising operators 

A k = ( N + l ) - l / 2 a k ,  A ~ = a ~ ( N + I )  -1/2 (k = 1 ,2 ,3)  (4.21) 

where N = (N 1 +N2 +N3) and which act on the states as follows: 

Agl0) = 0, Aging) = Inn - 1), 

Thus A k  is a "partial isometry": 

atghg = 1 -  10>(01, 

We have the commutation relations 

lAg, At t] = lO)6kl(OI, 

Let us now define 

cg +Ak), 

One easily verifies that 

A~ Ink) = Ink + 1) (4.22) 

AA t = 1 (4.23) 

[Ak,At] = lAte,Art] = 0 (4.24) 

1 t 
Sg - ~7(Ax - Ak) (4.25) 

[G,  S;] =~10>Skd01 
2i (4.26) 

[ck, G] = [&, &] = 0 

We also find from (4.23) that 

Ck2 +Sk2 = 1 -  10)½(0l (k = 1 ,2 ,3)  (4.27) 

Furthermore, with H = (Na + N2 + N3 + ~)h~o, we get 

[H, Ck] = ihwSk, [H, Sk ] = -ihooCk (4.28) 

Equations (4.27) and (4.28) suggest that we should introduce "trigonometric 
operators." Indeed, let us write 

A~ = e i~k (4.29a) 

Ak = e -i(~k --e--i(~k[O}{O[ (4.2915) 

This can be done, since as one easily checks, 23 this angle representation satisfies 
the algebraic relations (4.23), (4.24). Then from (4.25), (4.29) we obtain 

Ck = cos q~k - e-i~kt0) 2 {01 (4.30a) 

1 
S k = s i n ~  k + e - i C k  10) ~ (01 (4.30b) 

23 In checking these and subsequent formulas, one must realize that I 0 >~0 l e i¢k annihilates 
all states since, by (4.29a), d~kink>= Ink+ I).  
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and one can again check 23 that (4.26), (4.27), (4.28) are satisfied. We note 
that, in our Heisenberg picture, Ck depends on % and we write conveniently 

~bk(r ) = cot + ~k (4.31) 

where the operator ~Og is r independent. Equation (4.31) is consistent with 
the equations of motion (4.28). 

From (.4.28) and from (4.30) we obtain 24 

INk, i~lt = ~k~, [¢)k, ¢ l l =  0 (4.32) 

Thus, the map (ak, a~) -+ (Nk, i(~k) is a nonlinear canonical transformation. 
Actually, it can be verified that 

~k = (2J1c/M¢°)l/2c°s Ck 

Pk = - (2M¢Jk)  lnsin Ck (4.33) 

where Jk =- ~(Nk + ½). Thus, (~k, Pk) --> (Jk, -~k)  is also a canonical transform- 
ation, and equation (4.33) dearly displays the physical meaning of ~k: This 
operator is indeed the phase o f  the mode k of "oscillation" of the Hooke 
quasiparticle. 

Of course, the phase of a single oscillator is of no physical consequence, 
and this is reflected in the fact that, because of (4.32), H and Ck do not 
commute. However, in a system of several oscillators, relative phases should 
be meaningful. Indeed, one can easily define operators that measure pairwise 
phase differences. For simplicity of writing, let us use the notation 

Ak  ==- (OAk, Bk =- (2)Ak 

for the Ak operators relating to two distinct quasiparticles a and b, respectively, 
and define 

3 

1 AI~B l + A~Bj  (4.34a) Cab = -d 
1¢,1=I 

3 
Sab - - i  ~ a k g ~ - z l n  ] (4.34b) 

6 k,j=l 
With 

H = atkak + bkbk + • • • + h6o 

k = l  

being the n-quasiparticle Hamiltonian, we then find that 

[H, Ca~] = [H, Sab] = 0  

24 Note also tha t  [Ck, Art] = [Sk, NI] = 0 for k ~ 1. 

(4.35) 
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so that either Cab or Sab can be simultaneously diagonalized 2s with H, as 
desired. Furthermore, with (4.29), equation (4.39) can be brought to the form 

3 
1 

Cab ~ -  3 
it 

1 
Sab ~ -  

3 
k 

where 

(cos Ag]-eiZXg/lo)al a<0l-e-iaki[O> b l  b<0[) 

(4.36a) 

(sin A k j - e i ~ k ] l o ) a ~ i a ( o [  +e-iLak][O) b l  b<oI) 

(4.36b) 

(4.37) 

AZaj (4.38a) 

is independent of r, in accord with (4.35). 
It may be useful to define 

3 
1 

k,j=l 
3 

1 
Eab =--Cab - iSab 3 

k,i=l 

With (4.36) these can be expressed in the form 
3 

1 
E~ab = -~ ~ exp(iAkj)(1 - I0> a a(Ol) 

k,j=l 
3 

1 ~ exp(_iAkj)(l_10>bt~<01 ) 
kf f= l  

AkB ~ (4.38b) 

(4.39a) 

(4.39b) 

Thus, E~b measure suitably averaged phase differences. Because of (4.35) 

[H, Eab I = 0 (4.40) 

Thus, we can use the phase difference (as determined, say, 26 by Ea+b) as a 
good quantum number, along with H. 

We will use this circumstance to demonstrate that hadronic excitations 
which, in the quark language, wouM correspond to states with nonzero triality 
(i.e., to states with, say, one quark, or with two quarks) cannot arise. 27 The 
argument rests on the fact that such states would violate the Pauli symmetry 

2S However, Cab and Sab do not  commute.  
26 Note that  E~t b and E~b do not  commute.  
27 We already ment ioned that  "quarks are confined" since in our model  the quasiparticles 

are not  consti tuents but  simply a description of  collective excitation modes. However, 
we so far left the question open as to whether collective excitations with quantum 
numbers of  a single quark or of  a di-quark, etc., can or cannot arise. 
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of systems built from identical particles. Indeed, equation (4.39a) shows that, 
because the action of E+ab is+privileged with respect to the quasiparticle a, we 
cannot, in general, expect E~b eigenstates that have a definite symmetry against 
interchange of  a and b. 

We illustrate the situation for the case when the excitation is supposed to 
have the quantum numbers of a single quark. This means the system would 
contain, on the first excited level, one Hooke particle. All other Hooke oscil- 
lators are in the ground state. Let us compare the phase of the excited oscil- 
lator to any one of the oscillators in the ground state. The general form of the 
relevant part of the state vector is 

3 
[@)= ~ (azllt)alo) t~ +ctllo)a[ll) b) (4.41) 

l=l 

where t lt) is a state with the/-direction vibration mode excited, i.e., 

I la)  = I1)10)10), l l z )  = 10)ll)lO), 113)= [ o ) l o ) l l )  

Applying (4.380 we get 

1 i c¢2 3 
E ~ l ~ ) = ~ ( o ~  + +~3) ~ ll t)al0)b (4.42) 

1=1 

If l~)  is an eigenstate with eigenvalue e, then we have Ea+bl @) = el@), so that 
(4.41) and (4.42) give the conditions 

d = 0 (t = 1 ,2 ,  3) 

and 
3 

3eo: k = ~ d = 0  ( k =  1 ,2 ,3 )  
1=1 

The second condition means that either ak = 0 (k = 1, 2, 3) so that I @) is the 
null vector; or e = 0, whence the c~tc are arbitrary so that the e = 0 eigenstate 
would be 

3 
I@) = ~ a t t l t ) a l0 )  b 

l=l 

But this is neither symmetric nor antisymmetric against interchange of a and 
b, so that the Pauli principle is violated. 

Another illustration is the case of a "two-quark" excitation, i.e., where we 
consider an energy eigenstate with N = N (a) + N (b) = 2, and ask whether such 
states, being simultaneous eigenstates of  H and E+t,, can consist of both 
oscillators on the first level and having proper Pauli (anti)symmetry against 
exchange. The general state vector must now be written in the form 

3 
IV) = ~ (~ktl lx lt) a 10) ° + ~ 1  tk)al iz) t~ +atctl lt)al lk)  t~ + ~ktl0)al lk lt) b) 

k,l=l 
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One verifies (with a somewhat lengthy calculation 28) that it is impossible to 
have E+b eigenstates with any definite symmetry. 

Of course, if one considers quasiparticle-antiquasiparticle states (i.e., quark- 
antiquark systems) then the Pardi principle is not operative so that there is no 
obstacle to having such states appear as acceptable simultaneous eigenstates of 
H and E+b. 

5. Summary 

We have demonstrated that in completely unified spontaneously broken 
gauge theories, where superheavy bosons are expected to be present~ the vacuum 
expectation value of the Hamiltonian (and hence, the value of the correspond- 
ing cosmological constant) may be so large as to cause an enormous curvature 
in the small with the characteristic scale factor of the spacelike sections having 
the order of the typical extension of a hadron. Presence of "ordinary" sub- 
nuclear matter has negligible effect. In particular, if the symmetry breaking is 
caused (or described) by a Higgs-type mechanism, the cosmological constant 
is negative and the solution of the Einstein equations has S0(3, 2) symmetry. 
In the low-excitation (low-speed) limit the dynamics is then described by the 
Hooke group, to which corresponds an oscillator-like Hamiltonian. The 
collective excitations can then be characterized in terms of quasiparticles and 
antiquasiparticles, which are Hooke oscillator modes. Multi-quasiparticle 
excitations carry SU(3) quantum numbers, such states being direct products 
of the (3} and {3"} representations, where we restrict ourselves to each 
Hooke oscillator being in its first excited state. (This is in keeping with our 
low-energy limit.) Detailed contact with the standard naive nonrelativistic 
quark model can be established. The "quarks" (being simply quasiparticles) 
are naturally confined and, because eigenstates of a suitably constructed 
relative phase operator cannot possess Pauli exchange symmetry, collective 
excitations with nonzero triality are not permitted. 

We find it intriguing that the SU(3) structure is contingent upon the fact 
that the Hooke group is the low-speed (low-energy excitation) limit of the 
symmetry group S0(3, 2) associated with the solution of the Einstein 
equations. It is not difficult to see that there exists a "relativistic Hooke 
group," which arises as the contraction, not of S0(3, 2) but of S0(3, 3). One 
wonders whether "microuniverse solutions" exist for spontaneously broken 
unified gauge theories that have, to start with, this higher symmetry and 
whether, after a suitable limit is taken, the quasiparticle systems describing 
the collective excitations would exhibit an SU(4) structure, as is nowadays 
expected for more energetic excitations of subnuclear matter. We shall 
investigate this possibility in the future. 

It should be obvious that, in any case, our present work must not be con- 
sidered as a well-formed theory: It only suggests a possible and, it appears, 
consistent, speculative framework. Improvements and refinements (even apart 

28 One mus t  take into account  that ,  by  isotropy l a k l l :  = lc~lk l  2 , la/kl 2 = lc~klt z , l a k l l 2  = 

lC~kl] z . T h e  normalizat ion condit ions give fur ther  constraints.  
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from the possible extension to charm as suggested in the preceding paragraph) 
are necessary and do not appear impossible. Surely one ought to study the 
response o f  the quasiparticles ("quarks") to external probing by fields-this 
study should then show how deep inelastic scattering behavior and/or asymp- 
totic freedom arises. Likewise, we have, at this time, no clue to explain large 
transverse momentum effects. Finally, symmetry breaking and hence, removal 
o f  mass degeneracies in the multiplets must result from interactions between 
the quasiparticle excitations, which, presently, we do not know how to intro- 
duce in a unique manner. These and many other questions deserve further 
study. 
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